
Mathematics bilingual

Mathematics bilingual

This course was one of the two mathemati-
cal courses and our topic was an introduc-
tion to basic concepts of elementary diffe-
rential geometry, illustrated by their app-
lication to the Newtonian theory of gravi-
tation in three space dimensions. Elemen-
tary differential geometry refers to the ma-
thematical theory describing and analyzing
geometric properties of curves in Euclidean
space.

As a first part of the course we addressed
vector algebra and arithmetics, choosing an
abstract approach to vector spaces and con-
sidering the standard Euclidean spaces as
illustrating examples. After a short intro-
duction to basic physical concepts like ve-
locity, acceleration, force and momentum,
the second part of the course was on diffe-
rential calculus, motivated by physical pro-
blems and basically following the histori-
cal development of Newtonian mechanics
and differential calculus. This included the
conduction of small physical experiments
which helped obtaining physical and geo-
metric intuition for the mathematical con-
cepts involved.

Apart from the scientific contents, another
goal of our course was to use and teach
English as main medium of communicati-
on. We reached that goal to an surprising
extent and are very impressed how easily
our participants could cope with that ad-
ditional challenge. As we taught the whole
course in English language, our documen-
tation is in English, too.

All in all we are very content with the re-
sults of our course and had a nice and en-
joyable time with all the participants du-
ring the Science Academy.

Rainer Mühlhoff and Momsen Reincke

The participants

We were the Mathematic-Bilingual Cour-
se! They called us “bilingual”, although our
course actually was only in English lan-
guage. But with Momsen and Rainer, our
smart course leaders, we always thought
that the English language just gave the
icing on the cake to our perfect course.

Rainer Mühlhoff (Kursleiter)

The heart of our course. He moved us by
multiknowledge and gentle irony.

Momsen Reincke (Kursleiter)

Rainer would have been lost in space wi-
thout him. His courses got funny because
of his handwriting.

Anastasia Dietrich

The “dimension-girl”.

Bo Song

We won’t forget his presentations...

Bendix Labeit

Abstraction-king of mathematical groups.

Tan Lou

“Louise-multilingual”Chinese, German and
English!
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Lauretta Schwarz

Absolutely (linearly) independent.

Magdalena Wandelt

She always arranged for confusing questi-
ons.

Annika Konzelmann

She made the sequence converging.

Heike Hummel

Our trigonometry pro.

Mario Schulz

The quantum and nuclear fusion expert.

Christoph Sünderhauf

Walking proof that masterminds are most-
ly tiny.

David Kranzhöfer

Likes throwing vectors.

Jonathan Schaible

Joker to solve every problem.

Marian Huß

He perfectly did “poetic mathematics”.

Jan Forstbauer

Our star during the “Highland-Games”.

Trigonometric Functions
Heike Hummel, David Kranzhöfer,
Jonathan Schaible, Christoph
Sünderhauf

You can measure angles either in arc length
or in degrees.

In the unit circle with radius r = 1 the arc
length of a full turn equals 2π. Therefore,
the arc length of an angle can be calculated

α

360◦
· 2π =

α

180◦
π .

Here are some example conversions:

degrees arc length
0◦ 0
45◦ 1

4
π

90◦ 1
2
π

180◦ 1π
360◦ 2π

If we now draw this unit circle into a coordi-
nate system and mark at an arbitrary angle
α the point on the circle we get 2 coordi-
nates. The first coordinate gives us a point
on the x-axis, which is the so called cosine
of α (cos(α)), the second point gives us a
point on the y-axis, which is the so called
sine of α (sin(α)).

62



Mathematics bilingual

Sine and cosine at the Unitcircle

Sine and cosine are defined for every angle
α. Here are some examples:

α [arc] cos(α) sin(α)
0 1 0
1
4
π 1√

2
1√
2

π -1 0
1
2
π 0 1

3
2
π 0 -1

Let’s consider a triangle with the side lengt-
hs a, b, c and the angle α.

What can we now say about the proporti-
ons of the side lengths if we know the angle?
We know from the so called Strahlensatz,
that

sin(α)

a
=

1

c
⇔ sin(α) =

a

c
.

Now we can do the same with cos(α):

cos(α)

b
=

1

c
⇔ cos(α) =

b

c
.

The Pythagorean theorem together with
the above result yields:

c2 = a2 + b2

⇔ 1 =
a2 + b2

c2
=

a2

c2
+

b2

c2
= sin2(α)+cos2(α) .

Vectors as Arrows
Bendix Labeit

To start our discussion of vectors, consi-
der classes of arrows in the two-dimensional
plane all having the same length and di-
rection. Each class can be described by
two real numbers, the x and the y displa-
cement. Therefore each element of R2 :=
{(x, y) |x, y ∈ R} can be identified with a
class of arrows all having the same length
and direction and is called a vector. We de-
note an element v ∈ R2 as

~v =

(
x
y

)
.

Both arrows represent the same vector.

There are also other vectors and we will
give a precise and general definition of the
concept “vector” later.
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Vector arithmetics
Marian Huß

As you already know, vectors are classes of
arrows all having the same length and the
same direction. When we write down the
components of a vector, those are always
real numbers. So it is straight forward to
introduce simple rules for vector calculati-
on based on calculations with real numbers.
When we calculate with vectors we call this
vector arithmetics.

Vector addition

Adding up two vectors is not very diffi-
cult. The only thing we have to do is to
“connect” the two corresponding arrows so-
mehow.“Connecting two vectors”fulfills, as
we will see in the following paragraph, all
axioms of a commutative group of a re-
al vector space (Hint: If you haven’t do-
ne already, please read the section about
“commutative groups” and “vector spaces”
first!). So now we’ll give a geometrical de-
finition of the addition of two vectors.

This picture shows two vectors ~v and ~w in
the 2-dimensional Euclidean plane.

~v =

(
a
b

)
~w =

(
c
d

)
To add these two vectors, we move the tail
(starting point) of ~w to the tip (ending

point) of ~v in order to connect them (we are
allowed to do this because the components
of the vectors do not change).

This method is shown in the following pic-
ture:

We connect the tail of ~v with the tip of ~w
and get as a result another vector ~u.

The components of that third vector ~u are
exactly the sums of the x-components and
the y-components of ~v and ~w respectively:(

a
b

)
+

(
c
d

)
=

(
a + c
b + d

)
~u =

(
a + c
b + d

)
Example 1.

~v =

(
2

1, 5

)
~w =

(
3, 5
−0, 5

)
(

2
1, 5

)
+

(
3, 5
−0, 5

)
=

(
2 + 3, 5

1, 5− 0, 5

)
=

(
5, 5
1

)
~u =

(
5, 5
1

)
We can also prove the addition law of
commutativity for vector addition geo-
metrically:

We just take ~w as the first vector and take
as its tail exactly the point we took as the
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tail of ~v before. Then we put the tail of ~v
at the tip of ~w and see that the tip of ~v is
exactly the point that has been the tip of
~w after the first addition. Using formulas
this means:

The ~u we get as a result of that second
addition is exactly the first vector ~u.(

c
d

)
+

(
a
b

)
=

(
c + a
d + b

)

~u =

(
c + a
d + b

)
So now, as a final result, we have got the
formula of vector addition:

~v + ~w =

(
v1

v2

)
+

(
w1

w2

)
=

(
v1 + w1

v2 + w2

)
Of course this rule holds for additions of
more than two vectors, too.

We now give a proof of the law of asso-
ciativity for vector addition, which says:

~u + (~v + ~w) = (~u + ~v) + ~w .

Everyone should be able to understand the
following proof now:

~u + (~v + ~w) =

(
u1

u2

)
+

(
v1 + w1

v2 + w2

)
=

(
u1 + v1 + w1

u2 + v2 + w2

)
=

(
u1 + v1

u2 + v2

)
+

(
w1

w2

)
= (~u + ~v) + ~w

Scalar multiplication

Addition is not the only kind of vector
arithmetics. It is also possible to “scale”
a vector. “Scaling a vector” always means
to multiply it by a so called “scalar”. This
scalar is just any real number. When we
mention a scalar in a general mathematical
formula, we usually use the Greek letter λ
to symbolize it.

The picture above shows a vector ~v in the
Euclidean plane with

~v =

(
a
b

)
.

In this picture we see another vector ~w.
It has got the same direction as ~v and its
length is three times the length of ~v.

As you can see, ~w has got the components(
3 · a
3 · b

)
=

(
3 · v1

3 · v2

)
.

Now that you already know what ~v and ~w
have to do with each other (same direction;
~w has got 3 times the length of ~v), you may
easily see that it makes sense to write

3 · ~v = ~w
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because

3 · ~v = 3 ·
(

v1

v2

)
=

(
3 · v1

3 · v2

)
= ~w .

So in this case, 3 is the scalar of the mul-
tiplication and we finally know the general
formula of scalar multiplication:

For all λ ∈ R holds:

λ · ~v = λ ·
(

v1

v2

)
=

(
λ · v1

λ · v2

)
Example 2.

~v =

(
1, 5
1, 5

)

3 · ~v = 3 ·
(

v1

v2

)
= 3 ·

(
1, 5
1, 5

)
=

(
3 · 1, 5
3 · 1, 5

)
=

(
4, 5
4, 5

)
At last, in order to repeat both kinds of
vector arithmetics which we’ve learned so-
mething about now, we want to present the
proof of distributivity for vector additi-
on. For that we need to know the scalar
multiplication.

The law of distributivity says:

λ · (~v + ~w) = λ · ~v + λ · ~w

Proof :

λ · ~v + λ · ~w = λ ·
(

v1

v2

)
+ λ ·

(
w1

w2

)
= λ ·

(
v1 + w1

v2 + w2

)
= λ · (~v + ~w)

Vector Spaces
Magdalena Wandelt

After we talked about vectors, we came to
the topic “vector spaces”. The set of vector-
space-axioms is something like a “wishlist”,
and if a certain structure fulfills this wish-
list, we call it a vector space.

Definition 1 (group). Let G be an arbi-
trary set. (G, +, 0) is called a group, if

1. there is an operation

+: G×G → G ;

2. for all x, y, z ∈ G :

x + (y + z) = (x + y) + z ;

3. there is an element 0 ∈ G, such that
for all x ∈ G:

0 + x = x + 0 = x .

0 is called “neutral element”;

4. for every x ∈ G exists a (−x) ∈ G,
such that

x + (−x) = (−x) + x = 0

(existence of inverse elements).

Conditions 1–4 are called group axioms and
will be explained now:

+: G × G → G is a notion for “+ is an
operation, which you give two elements of
G and you obtain an element of G”. An ex-
ample would be: g : R × R → R. g is the
name of a function, we put two real num-
bers in and get another real number out.
For example in the case of the +-operation:
g(7, 3) : 7 + 3 = 10.

The set has to contain a neutral element.
For the +-operation (of the integers, or of
the real numbers) it would be the 0, becau-
se if you add any number with 0, you always
get this number out. If we defined the na-
tural numbers without 0, they would fail
this axiom, because they have no neutral
element. However, the integers or the real
numbers would fulfill this axiom, because
they have 0 as a neutral element with re-
spect to the +-operation. −x would be the
inverse element for x. The natural numbers
would again fail this axiom, because they
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contain no inverse element, but for example
the integers would fulfill it, because they
have an inverse element for each element.
For example we take 1 and its inverse ele-
ment (−1). Both are contained in the in-
tegers. Now, if we add 1 and (−1), we get
0.

If for a group also holds this fifth axiom, the
commutativity, you call it a commutative
group.

5. For all x, y ∈ G :

x + y = y + x

(commutativity of +).

The fifth axiom tells us, that for all
x, y ∈ G holds the commutativity in a +-
operation. That means, that we get the sa-
me result, if we add x and y or y and x. So:
x + y = y + x. An example with numbers
would be: 4, 2 + 8, 79 = 8, 79 + 4, 2.

But there are four further axioms, which
should be fulfilled, to fix a vector space.

Definition 2 (vector spaces). Let G be
a commutative group.

1. There is an operation – the scalar mul-
tiplication:

· : R×G → G .

2. There has to be a neutral element with
respect to the scalar multiplication. So
for all x ∈ G :

1 · x = x .

3. For all m,n ∈ R and for all x, y ∈ G :

(m + n) · x = m · x + n · x

and also

m · (x + y) = m · x + m · y .

4. · is associative, such that for all m,n ∈
R and for all x ∈ G:

(m · n) · x = m · (n · x) .

· : R × G → G is a notion for “· is an ope-
ration, which you give a real number and
an element of the set G and you obtain an
element of G′′. This scalar multiplication
you already saw in vector algebra. For e.g.
2 ∈ R and v a vector:

·(2, v) : 2× v = 2×
(

v1

v2

)
=

(
2v1

2v2

)
.

1 is an element of the real numbers and
in multiplication and scalar multiplication
also the neutral element.

So here are four different operations invol-
ved: scalar multiplication, multiplication in
R, addition in R and vector addition.

If there is any set, which fulfills all axioms,
it is a real vector space!

(G, +, 0, ·) is called a real vector space. G is
the set and consists of vectors, + for the +-
operation and has the “0-vector” as a neu-
tral element, · for the scalar multiplication
in the first axiom.

General remarks about
groups

Bendix Labeit

We’ve already looked at the definition of a
group. Now we want to further investigate
what groups actually “are”.

Simply spoken groups are sets of mathema-
tical objects of which two can be connec-
ted such that you obtain another object.
Of course groups were already used before
the notion “group” was formally defined.

One of the very first applications of mathe-
matics is the addition of numbers. If you
further investigate this idea, you see that
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this is nothing more than having an “ope-
ration” (the addition) on a sets of mathe-
matical objects (e.g. the integers). This is
the basic idea behind the concept of groups.
As people already knew a lot about these
certain structures, the choice of the group-
axioms is based on experience according to
the integer numbers. (one example for a
group is the set of the integers. It is the
group which probably was used first).

To prove a set to be a group, you have to
find out if the set connected with the ope-
ration fulfills all the group-axioms.

Below we there is a list of groups with
each an explanation why it is a matter of a
group.

Example 3 (Z, +). We now consider the
set Z together with the +-operation. As we
know, + is associative and commutative,
0 is a neutral element with respect to +
and for every element there is an inverse
element. All axioms are fulfilled, therefore
the set is a group.

Example 4 (R\{0},×). The set of the re-
al numbers without the 0 together with the
multiplication is also a group, because (just
like in example 1) all group-axioms are ful-
filled

Example 5. An “abstract” group:

Now we consider (V, %) to be a group. V =
{?,♥}. Let the operation % be defined by:

%: V×V → V

?%? := ♥
?%♥ := ?

♥%? := ?

♥%♥ := ♥

Note that

1. there is an operation: V × V → V ;

2. the operation is associative;

3. there is a neutral element: As we al-
ready know the neutral element can be
recognized if we do the operation with
an arbitrary element x and the neutral
element, then we receive the element x
we used. We have the operation:

?%♥ := ?

♥%? := ?

♥%♥ := ♥

As we can see, ♥ fulfills this criteri-
on. Therefore ♥ must be the neutral
element;

4. for every element there is an inverse
element: We already know that if we
do the operation with an element and
its inverse element, then we receive the
neutral element

?%? := ♥
♥%♥ := ♥

As ♥ is the neutral element, ? must be
the inverse element of ? and ♥ must be
the inverse element of ♥.

Example 3 shows, that the elements of
groups don’t have to be numbers. They
can be just anything as long as the set to-
gether with the operation fulfills the group
axioms. There are a lot of groups which
consist of “abstract” elements.

Linear independence
Lauretta Schwarz

Definition 3 (linear independence).
Let ~v1, ~v2, . . . , ~vn be elements of a real vec-
tor space V . ~v1, ~v2, . . . , ~vn are called linearly
independent, if for all a1, . . . , an ∈ R:

a1 · ~v1 + a2 · ~v2 + . . . + an · ~vn = 0

⇒ a1 = a2 = . . . = an = 0 .
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This means: If you have an arbitrary num-
ber of linearly independent vectors, you can
scale them like you want and afterwards
add them, but you will never get ~0 as a re-
sult. You can only get the zero vector as a
result of the addition, if all the scalars equal
zero. For instance, two vectors in the two-
dimensional space are linearly independent
if they don’t have the same direction.

These two vectors are linearly
independent.

In the two-dimensional space three vectors
are always linearly dependent.

These three vectors are linearly
independent because you can scale them,
such that you get the zero vector as a
result.

Definition 4 (linear span). Let
~v1, ~v2, . . . , ~vn be elements of V .

〈~v1, ~v2, . . . , ~vn〉 := {a1 · ~v1 + . . . + an · ~vn |
a1, . . . , an are elements of R}

is called the linear span of ~v1, ~v2, . . . , ~vn.

This means: The linear span of an arbitrary
collection of vectors is the set of all points
that can be reached by scaling and adding

these vectors. As an illustration: Two vec-
tors in the two-dimensional space which ha-
ve the same direction don’t span the whole
space, but a line.

Two vectors in the two-dimensional space
which don’t have the same direction span
the whole space.

Dimensions
Christoph Sünderhauf

We’ll need some other elementary definiti-
ons to be able to understand dimensions.

Let’s define the basis B of a real vector
space V :

Definition 5 (basis). A subset B ⊂ V of
the vector space is called basis of V , if B is
linearly independent (all vectors in B are
linearly independent) and if 〈B〉 = V .

What does that mean? Some vectors of V
are in the set B. Now we require their linear
span to be V . So, if we scale all the vectors
in B somehow and add them, then we get
all vectors in V .
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Wow! We can create V using B. But B
has another special property too: B has to
be “big” enough to span the whole vector
space, but also “small” enough to be linear-
ly independent.

So now we finally come to the definition of
dimension in the mathematical sense.

Definition 6 (dimension). Let B be a
basis of a vector space V . Then the dimen-
sion of V = |B|3

So we just used the previous definition of
a basis. B is a basis of V , just like we de-
fined before. |B| is the minimal number of
vectors needed to span V . Now we just de-
fine that this number is the dimension of
V . Now we would have to proof that eve-
ry basis of V has the same cardinality, but
for convenience sake we won’t state it here,
because it’s very complicated.

Let’s use an example to make all this more
clear. We’ll use R2 to illustrate this. To find
out the dimension of R2, we need a basis of
R2. Let’s consider the set consisting of the

two vectors

(
1
1

)
and

(
3
3

)
.

A basis has to be linearly independent, but
these two vectors are linearly dependent,
since

−3 ·
(

1
1

)
+ 1 ·

(
3
3

)
= 0 .

Therefore they can’t form a basis.

Let’s try the vectors

(
1
2

)
and

(
5
4

)
. These

two vectors are linearly independent, be-
cause ∀λ, µ ∈ R:

λ ·
(

1
2

)
+ µ ·

(
5
4

)
= 0

⇔ 1λ + 5µ = 0

∧ 2λ + 4µ = 0 .

3|M | is called the cardinality of M . If M has
a finite number of elements, |M | is the number of
elements in M .

Now we just have to solve this linear system
of equations.4 The result is λ = µ = 0.

What is their linear span? We can write

an arbitrary Vector of R2 as

(
x
y

)
, where

x, y ∈ R. So, if we want to express that
their linear span is R2, we would have to
solve the equation(

x
y

)
= λ ·

(
1
2

)
+ µ ·

(
5
4

)
for any x,∈ R:(

x
y

)
= λ ·

(
1
2

)
+ µ ·

(
5
4

)
⇔ λ + 3µ = x

∧ 2λ + 4µ = y

If we solve this linear system of equations5

we get λ = y
6
− x

3
and µ = 8x

3
+ 5y

6
. Because

λ and µ exist for all possible x, y ∈ R, we

know that we can form every

(
x
y

)
as λ ·(

1
2

)
+ µ ·

(
5
4

)
. Therefore we also know,

that the linear span of

(
1
2

)
and

(
5
4

)
is R2

So we found a basis of R2.

Of course there are other bases of R2. One

of them, {e1, e2}, where e1 =

(
1
0

)
and e2 =(

0
1

)
, is called standard basis. Ironically,

there’s nothing special about it, other than
the small whole numbers as components.

The definition of the dimension of a vector
space tells us that the dimension of R2 is
the number of vectors in its basis. There are
two vectors in its basis, so the dimension of
R2 is 2.

We can look at an example from R3, too.

Here

1
2
0

 and

5
4
0

 wouldn’t form a valid

4This exercise is left to the reader.
5This exercise is also left to the reader.
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bases. They are linearly independent6, but
their linear span isn’t R3.

For Example

5
9
0

,

9
5
0

 and

1
1
7

 form a

basis of R3, so we know that the dimension
of R3 is 3.

Norm and Scalar Product
Jan Forstbauer

Just imagine a length measuring which gi-
ves us the length of a vector v described by
a real number. Such a machine does really
exist, we call this map norm.

Definition 7 (norm). Let V be a real vec-
tor space. A map ‖ · ‖ : V → R is called a
norm if it fulfills the following axioms:

1. ∀λ ∈ R ∀v ∈ V : ‖λ · v‖ = |λ| · ‖v‖

2. ∀v ∈ V : ‖v‖ = 0 ⇒ v = 0

3. ∀v, w ∈ V : ‖v‖+ ‖w‖ ≥ ‖v + w‖

From elementary geometry (Pythagorean
theorem), we know how to calculate the
length of vectors. So now I’ll present you
a special norm based on the Pythagorean
theorem. It is called the Euclidean norm.

Definition 8 (Euclidean norm). The
map defined as

• ‖v‖ =
√

x2 + y2 (twodimensional pla-
ne)

• ‖w‖ =
√

x2 + y2 + z2 (threedimensio-
nal space)

is called the Euclidean norm.

6They’re the same as in the example from R2,
because their z is 0. So we already proved that they
are linearly independent.

Instead of proofing that the Euclidean
norm fulfills all these axioms – which is in-
deed the case – we’ll now consider an app-
lication.

You might know the situation that you see
a tree in the noon not standing straight up
and you wonder how long the tree’s shadow
would be.

To solve that problem, we need another de-
finition.

Definition 9 (scalar product). The sca-
lar product of two vectors v, w ∈ Rn where
n = 2, 3 is defined as:

v · w = ‖v‖ · ‖w‖ · cos α

As result we get a real number representing
the length of the projection of v onto w
multiplied by the length of ‖w‖.
If the scalar product is zero, there are two
possibilities. The first is that one vector is
orthogonal to the other. The second possi-
bility is that one vector is the so called zero
vector.

With help of this definition, we now are ab-
le to calculate the length of the tree’s sha-
dow. Both the tree and the ground can be
represented as vectors v and w. The scalar
product of v and w then yields the length
of the shadow.
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Sequences
Annika Konzelmann

Definition 10 (sequence). Let M be a
set. A sequence in M is a map a : N → M .
We usually denote a sequence by (ai)i∈N.

This means that we have a machine in
which we put a natural number i and recei-
ve an element ai of the set M . A sequence
can be illustrated by a list of infinitely ma-
ny elements, of course elements may occur
several times.

To make this clear we present the following
examples:

Example 6. Let M = {?,♥}.
The following table shows the position of
each element.

position element of M
1 ?
2 ♥
3 ?
4 ♥
. . . . . .

Example 7. Let M = R2.

ai := ~v =

(
2
3

)
for all i ∈ N

Here you can see again the position of each
element.

position element of M
1 ~v
2 ~v
3 ~v
4 ~v
. . . . . .

This is called a constant sequence.

Example 8. Let M = N. The following
sequence is called a Fibonacci Sequence:

a1 = 1; a2 = 1;

ai = ai−1 + ai−2 for i ≥ 3

This is called a recursive definition.

The position of each element is shown in
the following table.

position element of M
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
. . . . . .

After we worked with sequences we consi-
dered convergent sequences, which are nee-
ded for the definition of derivatives.

Definition 11 (accumulation point).
Let (ai)i∈N be a sequence in Rn. x ∈ Rn is
called accumulation point if every disc with
arbitrary radius around x covers infinitely
many points of the sequence.

Definition 12 (convergent sequence).
Let (ai)i∈N be a sequence in Rn (n =
1, 2, 3). It is called convergent to the limit
x ∈ Rn, if

∀ ε ∈ R>0∃N ∈ N : ∀i ≥ N : ||ai − x|| < ε.

This formula says that for all possible ra-
diuses ε ∈ R>0 there is a natural number
such that for all list entries (elements of the
sequence) the point ai lies in the circle with
radius ε around the point x.

If the sequence is convergent and approa-
ches x, then for all possible circles around
x there are only finitely many elements of
the sequence outside the circle and infini-
tely many elements inside the circle. The
elements inside the circle accumulate to x,
so x is the accumulation point.

72



Mathematics bilingual

Definition 13 (limit point). The on-
ly accumulation point of a convergent se-
quence is called limit point and we write:

lim
i→∞

ai = x.

Example 9.

1. M = R2, ai =

(
1
i
1
i

)

2. M = R, ai = 3 + 1
i

3. M = R, ai = (−1)i

Differentiation
Mario Schulz

Motivation

At first we considered the case R → R. Let
f be a function f : R → R and h ∈ R.
Consider the points X1 = (x1 | f(x1)) and
X2 = (x1 + h | f(x1 + h)).

The aim is to calculate the tangent slope at
X1. The average slope between X1 and X2

is calculated by f(x1+h)−f(x1)
h

. This formula
is deduced from the “slope-triangle”.

As you can see at the graph, the calculated
slope would not be the tangent slope at X1.
We shorten then the distance between the
points and now consider the point X2 clo-
ser to X1. As a result, the calculated slope
approaches the tangent slope.

Therefore it would be necessary to put the
second point just next to X1 which means
that h gets nearly 0. But h must not equal
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0 because as you can see h is the nominator
above. To solve this problem we introduced
limits. The tangent slope m is then calcu-
lated by

m = lim
h→0

f(x1 + h)− f(x1)

h
.

Now consider a map s : R → Rn and tt, t2 ∈
R.

The curve could be interpreted as the tra-
jectory of some moving body in the n-
dimensional space where every point of the
curve gives the position of the body at so-
me time t. The goal is to calculate the ve-
locity v of the body at time t1. An appro-
ximation for the velocity is calculated by
∆s
∆t

= s(t2)−s(t1)
t2−t1

.

To get the exact velocity we shorten the
“distance” between t1 and t2. If we let h be
t2 − t1 it is possible to write the same like
above:

v = lim
h→0

s(t1 + h)− s(t1)

h
.

Geometrically the result would be the tan-
gent vector at t1. It is a vector because the
velocity v = ∆s

∆t
, and ∆s is the vector from

s(t1) to s(t2) which is scaled by the time
difference.

Definition (derivative). Let f be a func-
tion f : R → Rn where for p ∈ R the limit
limh→0

f(p+h)−f(p)
h

exists. Then we call the

function differentiable at p and f(p+h)−f(p)
h

is called the derivative of f at p. If this is

possible for all p ∈ R, the whole function
is differentiable and its derivative, which is
a new function, is called f ′ : R → Rn. f ′

is called the first derivative, f ′′ (the deriva-
tive of the derivative) is called the second
derivative of the function f .

Now consider the s(t) diagram out of the
“Hover-Car-Experiment”which gives us the
distance s of the car after some time t. If
the slope of this function at some point is
calculated we obtain the change of s per
change of t, which is the velocity. And in
this case the slope is nothing else than the
derivative at that point.

So the v(t)-diagram is just the first deriva-
tive of the s(t)-diagram. Further it is pos-
sible to take again the derivative: The re-
sult is the second derivative, which is the
change of v per change of t, which equals
to the acceleration.

So we can write:

s = s(t), s′ = v(t), s′′ = a(t),

and use this in physics.

Differentiation rules
David Kranzhöfer

Taking the derivative of a function f(x) at
the point x is called differentiation. The de-
rivation of f(x) at x involves calculations
with limits. As calculating with limits is ve-
ry difficult, we now give three simple diffe-
rentiation rules summarized in two propo-
sitions. These rules make calculating deri-
vatives more easy without using limits.

Proposition 1 (linearity of differentia-
tion).

(i) (a · f(x))′ = a · f ′(x) a ∈ R

(ii) (f + g)′(x) = f ′(x) + g′(x)
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Rule (i) helps us in the case we have a for-
mula in the form a · f(x). Then, we can
neglect the factor a in front of the function
for the derivation and only take the deri-
vative of the function f(x) which is called
f ′(x). Afterwards we have to multiply the
derivative by the factor a.

In the case we want to know the derivative
of the sum of two functions f(x) and g(x),
we may use the rule (ii), which is called
sum rule. This rule tells us that for each
arbitrary function h(x) = (f + g)(x), we
obtain the derivative h′(x) by splitting up
the function into two new functions f(x)
and g(x) and sum up the derivatives of each
of these two functions.

Example 10. We proved that the deriva-
tive of f(x) = x2 is 2x. (You can find the
proof for functions of the form f(x) = xn

at the end of this chapter.) In the following
example, we apply rule (i).

3 · f(x) = 3x

(3 · f)′(x) = 3 · f ′(x) = 3 · 2x = 6x

Example 11. The next example shows us
an application of rule (ii).

h(x) = 3x2 = 2x2 + x2 = f(x) + g(x)

⇒ h′(x) = (f + g)′(x)

= f ′(x) + g′(x)

= 4x + 2x

= 6x

Proposition 2 (product rule). For all
differentiable functions f(x), g(x) from R
to the R holds:

(f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x)

Beweis. The proof of the product rule

mainly consists of difficult calculations:

(f · g)′(x) = lim
h→0

(f · g)(x + h)− (f · g)(x)

h

= lim
h→0

f(x + h) · g(x + h)− f(x) · g(x)

h

= lim
h→0

[f(x + h) · g(x + h)− f(x) · g(x)

h

+
f(x + h) · g(x)

h
− f(x + h) · g(x)

h

]
= lim

h→0

[f(x + h) · g(x + h)

h
− f(x + h) · g(x)

h

+
f(x + h) · g(x)

h
− f(x) · g(x)

h

]
= lim

h→0
f(x + h) · lim

h→0

g(x + h)− g(x)

h

+ g(x) · lim
h→0

f(x + h)− f(x)

h
= lim

h→0
f(x + h) · g′(x) + g(x) · f ′(x)

=f(x) · g′(x) + g(x) · f ′(x)

The product rule is used in case we have a
function h(x) which is the product of two
functions f(x) and g(x). Then, we can split
it up into the functions f(x) and g(x) which
we already know the derivatives of. (In the
following example, we know the derivatives
of f(x) and g(x) by the help of the proof
at the end of this chapter.) With the help
of this knowledge, we can use the formula
above to calculate the derivative of h(x).
Example:

h(x) = 2x3 = 2x · x2 = f(x) · g(x)

⇒ (f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x)

= 2 · x2 + 2x · 2x
= 2x2 + 4x2

= 6x2

Additionally, we want to have a look at the
generalized case when we have a function
of the form f(x) = xn as we had in all
examples above. If we know the derivative
of this generalized case f(x) = xn, it’ll be
very simple to calculate the derivative of a
certain function of this form.
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Proposition 3. Let f(x) = xn be a dif-
ferentiable function. Then the derivative is
f ′(x) = nxn−1

Beweis. We do this proof by mathematical
induction.

Start of induction

We have to proof that the assumption holds
for n = 1, i.e. f(x) = x. The derivative has
to be f ′(x) = 1 which indeed is the case, as
was shown earlier.

Induction step

Now comes the more difficult part of the
induction. We assume that the assertion
holds for n. Then we have to prove that
it holds for n + 1.

f(x) = xn+1

We split this function into two functions
f1(x) = xn and f2(x) = x such that

f1(x) · f2(x) = f(x).

As we already know the derivatives of the-
se two functions (of xn because we assu-
med it at the beginning of the induction
step, of x because we proved in the start
of induction), we can use the product rule
f ′(x) = f1(x) · f ′2(x) + f ′1(x) · f2(x).

f ′(x) = xn · 1 + nxn−1 · x
= xn + nxn

= (n + 1)xn

By mathematical induction follows that the
derivative of the function f(x) = xn is
f ′(x) = nxn−1.

Newtonian Axioms
Anastasia Dietrich

One of the most important sectors of
classical physics is mechanics. And there
wouldn’t be something like this if there we-
ren’t the Newtonian Axioms.

First Newtonian Axiom

“A body tends to stay at rest and it tends
to stay in uniform motion unless there is a
force acting on it.”

If you throw a ball, according to the First
Newtonian Axiom this ball should continue
to move in the same direction with a con-
stant velocity. Obviously this isn’t the usu-
al behavior of balls on earth, which does
not mean that this axiom is wrong. The
axiom is still valid because on earth there
is a force acting on it, as we always have
gravitation and friction.

Second Newtonian Axiom

Imagine you are climbing in the rocks. You
slip off and fall down into your safety rope,
which does not hold you. It did indeed as
you tried before if it would hold you. But
why not now? There must have been diffe-
rent momentums.

But what is momentum?

1. Think of a car with a big mass and
a car with a low mass. Both of them
are driving with the same velocity be-
fore they crash into a wall. The ques-
tion is which one gets damaged more.
Of course the answer is the one with
the bigger mass. And that would mean
that the car with the big mass had mo-
re momentum than the other car, alt-
hough they were driving with the same
velocity. And this tells us that momen-
tum is also dependent on mass.

2. Think of a fast and a slow car with the
same mass, which are traveling on the
freeway. Now they crash into a wall.
Which one is damaged more? Of cour-
se the one with the higher velocity.
That means that the fast car had mo-
re momentum. Because there was no
difference between the masses, velocity
must be also one factor of momentum.
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What is force?

Imagine that you are a sprinter. You want
to run 20 km/h over a short distance. Now
imagine that you have two possibilities.
The first one is to accelerate your body in
a short period of time to this momentum
which you get, if you run 20 km/h. The se-
cond one is to accelerate you body slower
to this velocity and momentum. For which
one would you need more force? Of course
for the faster acceleration. It is the same
with a sport car which runs up to 100 km/h

in 7s and a Golf which needs 13s. The sport
car’s engine has more power and is therefo-
re able to apply more force during accelera-
ting. Force is the change of the momentum
divided by the time-difference.

F = m · a, because p = m · v and v′ = a (v′

is the derivative of v)

Gun-Experiment:

Two balls with the same mass are put in
something like a gun, so that after releasing
this gun one ball is shot on a horizontal
path to the right and the other one just
falls directly down to the ground.

We observe by listening:

Both balls hit the ground simultaneously.
We can see that the motions in two or-
thogonal directions does not disturb each
other. It is called the “superposition prin-
ciple”.

Hover-Car-Experiment
Jonathan Schaible

A nice experiment for discovering physical
laws and mathematical interrelations is the
Hover-Car-Experiment.

Description

The main element of this experiment is a
rail with small holes out of which a fan
blows air. Therefore, a small car can mo-
ve on the rail with very little friction. It is

Diagrammatic picture of the experiment.

accelerated by a mass connected to the car
by a rope. Now the time the car needs to
move a certain distance can be measured by
setting a light trap at this point. When the
light beam is interrupted by a stick fixed
at the car, an electronic time clock displays
the time since it has been started.

For more precise measurements, we didn’t
try to start the car and the clock simulta-
neously ourselves. Instead, we used an elec-
tric magnet holding the car until the clock
starts and cuts the magnet’s current ent-
ry. What still could spoil our measurements
the magnet’s core is still a little magneti-
zed if it is turned off which can decelerate
the car or that the time difference between
the two sticks crossing the light trap is too
short for the clock to notice it.

Trying out different masses to pull the car,
different masses which can be packed on
the car and different distances to the light
trap in order to collect many values helps
remark some interrelations.

In the following example measurements, ti-
me 1 is the time between the first and the
second stick of the car crossing the light
trap and time 2 is the time between the
start and the first stick crossing the light
trap.

Distance [m] time 1 [s] time 2 [s]
0,25 0,108 1,065
0,75 0,066 1,816
1,00 0,058 2,098

Mass (car) [g] time 1 [s] time 2 [s]
0 0,078 1,360
2 0,098 1,805
3 0,111 2,076
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Mass (pulling) [g] time 1 [s] time 2 [s]
10 0,080 1,480
20 0,058 1,066
30 0,048 0,889

The distance depending on the time.

The points in this diagram all lie on a cur-
ve which resembles a parabola, so you will
get different slopes at each point of time.
The slopes of the secants (the lines connec-
ting two points on the curve) of this pre-
sumed function are not the same as the
slopes of the tangents, which means con-
cretely: By drawing those secants, you al-
ways get the average speed for a short time
and not the current speed. Calculating the
slope instead of showing it geometrically is
done by dividing the y-displacement by the
x-displacement, in this case it would be ∆s

∆t
.

These values of the slopes just obtained
can now be put into another diagram which
shows the velocity depending on the time.
In order to do that, you need several velo-
cities at different points of time. Connec-
ting those points in a diagram results in
a straight line going through the origin.
Thus, it is a linear function.

Again, you calculate the slope which is the
same at each point of time in this very case.
So the third step would be to draw a dia-
gram showing the acceleration depending

The velocity depending on the time.

on the time. Some values are needed, too,
and if you connect the points in a diagram,
you will get a straight line parallel to the x-
axis, a constant function. This is the case
because the slopes in the second diagram
are always the same.

The acceleration depending on the time.

But you can constitute this physically, too,
because the second Newtonian axiom says:
The rate of change of momentum of a body
is equal to the resultant force acting on the
body and is in the same direction.

The acceleration a must be constant as
well: For the momentum p holds

p = m · v.

And because the second Newtonian axiom
just says that the force F is equal to the
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rate of change of momentum, you can wri-
te:

F (t) = p′(t).

(The force equals to the derivative of the
momentum.) By using the product rule, we
can calculate:

F (t) = (m(t) · v(t))′

= m′(t) · v(t) + m(t) · v′(t)
= m′(t) · v(t) + m(t) · a(t).

The mass is constant in the present expe-
riment, therefore its derivative equals to 0.

⇒ m′(t) · v(t) = 0

⇒ F (t) = m(t) · a(t)

Or, more easily:

F = m · a.

If F is the force (here: the gravitation for-
ce acting on the pulling mass), m is the
accelerated mass of the car and a is the ac-
celeration, then you can express this law in
the formula F = m ·a. And as F and m are
constant in this experiment, a is constant
as well.

Differentiating

Taking the slope of a function and expres-
sing it in a new function as in the previous
example is called differentiating. The func-
tion which assigns the slope to a point of
time is called derivative. The derivative is
obtained by differentiating at each point of
the function. So to get from the first to the
second function in the example with the ho-
ver car experiment, you take the first deri-
vative and from the second one to the third
one, you take the second derivative of the
first function.

Of course all this is still very imprecise. To
calculate the exact derivatives, you need
differential calculus.

Another example where differential calcu-
lus is needed is an ant moving on a two-
dimensional plane.

Trajectory of an ant moving on a plane.

To describe the trajectory of the ant, you
need a function mapping from the time to
the space:

s : R → R2.

The velocity ~v at time t0 can be described
like that:

v =
s(t1)− s(t0)

t1 − t0
=

s(t0 + h)

h
, t1−t0 = h.

If h gets smaller and smaller, the calculati-
on gets more precise: The hypotenuse gets
more and more tangent to the curve at the
point t0. But h must never equal to 0 as
it isn’t possible to divide by 0. In this case
you need again the differentiation.
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